Marine Animal Classification with Correntropy Loss Based Multi-view Learning
نویسندگان
چکیده
To analyze marine animals behavior, seasonal distribution and abundance, digital imagery can be acquired by visual or Lidar camera. Depending on the quantity and properties of acquired imagery, the animals are characterized as either features (shape, color, texture, etc.), or dissimilarity matrices derived from different shape analysis methods (shape context, internal distance shape context, etc.). For both cases, multi-view learning is critical in integrating more than one set of feature/dissimilarity matrix for higher classification accuracy. This paper adopts correntropy loss as cost function in multi-view learning, which has favorable statistical properties for rejecting noise. For the case of features, the correntropy loss-based multi-view learning and its ”entrywise” variation are developed based on the multi-view intact space learning algorithm. For the case of dissimilarity matrices, the robust Euclidean embedding algorithm is extended to its multi-view form with the correntropy loss function. Results from simulated data and real-world marine animal imagery show that the proposed algorithms can effectively enhance classification rate, as well as suppress noise under different noise conditions.
منابع مشابه
Learning with the maximum correntropy criterion induced losses for regression
Within the statistical learning framework, this paper studies the regression model associated with the correntropy induced losses. The correntropy, as a similarity measure, has been frequently employed in signal processing and pattern recognition. Motivated by its empirical successes, this paper aims at presenting some theoretical understanding towards the maximum correntropy criterion in regre...
متن کاملMulti-label Active Learning Based on Maximum Correntropy Criterion: Towards Robust and Discriminative Labeling
Multi-label learning is a challenge problem in computer vision fields. Since annotating a multilabel instance costs greatly, multi-label classification has become a hot topic research. State-of-theart active learning methods either annotate all the relevant samples without diagnosing discriminative information in the labels or annotate only limited discriminative samples manually, that has weak...
متن کاملCOST FUNCTIONS FOR SUPERVISED LEARNING BASED ON A ROBUST SIMILARITY METRIC By ABHISHEK SINGH A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science COST FUNCTIONS FOR SUPERVISED LEARNING BASED ON A ROBUST SIMILARITY METRIC By Abhishek Singh May 2010 Chair: José C. Prı́ncipe Major: Electrical and Computer Engineering This thesis proposes cost functions for supervised learning algorithms, based...
متن کاملRegularized maximum correntropy machine
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the cl...
متن کاملl2, 1 Regularized correntropy for robust feature selection
In this paper, we study the problem of robust feature extraction based on l2,1 regularized correntropy in both theoretical and algorithmic manner. In theoretical part, we point out that an l2,1-norm minimization can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates convergence study and algorithmic development. In particular, a general formulation is accordi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.01217 شماره
صفحات -
تاریخ انتشار 2017